Systematic Drug Repositioning Based on Clinical Side-Effects

نویسندگان

  • Lun Yang
  • Pankaj Agarwal
چکیده

Drug repositioning helps fully explore indications for marketed drugs and clinical candidates. Here we show that the clinical side-effects (SEs) provide a human phenotypic profile for the drug, and this profile can suggest additional disease indications. We extracted 3,175 SE-disease relationships by combining the SE-drug relationships from drug labels and the drug-disease relationships from PharmGKB. Many relationships provide explicit repositioning hypotheses, such as drugs causing hypoglycemia are potential candidates for diabetes. We built Naïve Bayes models to predict indications for 145 diseases using the SEs as features. The AUC was above 0.8 in 92% of these models. The method was extended to predict indications for clinical compounds, 36% of the models achieved AUC above 0.7. This suggests that closer attention should be paid to the SEs observed in trials not just to evaluate the harmful effects, but also to rationally explore the repositioning potential based on this "clinical phenotypic assay".

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Drug Network Based on Side Effects and Its Application for Drug Repositioning

Drugs with similar side-effect profiles may share similar therapeutic properties through related mechanisms of action. In this study, a drug-drug network was constructed based on the similarities between their clinical side effects. The indications of a drug may be inferred by the enriched FDA-approved functions of its neighbouring drugs in the network. We systematically screened new indication...

متن کامل

Computational drug repositioning based on side-effects mined from social media

Drug repositioning methods attempt to identify novel therapeutic indications for marketed drugs. Strategies include the use of side-effects to assign new disease indications, based on the premise that both therapeutic effects and side-effects are measurable physiological changes resulting from drug intervention. Drugs with similar side-effects might share a common mechanism of action linking si...

متن کامل

An overview of glucagon-like peptide-1 receptor agonists for the treatment of metabolic syndrome: A drug repositioning

Metabolic syndrome (MetS) is a clustering of several cardiovascular risk factors that include: obesity, dyslipidemia, hypertension and high blood glucose, and often requires multidrug pharmacological interventions. The management of MetS therefore requires high healthcare cost, and can result in poor drug treatment compliance. Hence drug therapies that have pleiotropic beneficial effects may be...

متن کامل

Explore Small Molecule-induced Genome-wide Transcriptional Profiles for Novel Inflammatory Bowel Disease Drug

Inflammatory Bowel Disease (IBD) is a chronic and relapsing disorder, which affects millions people worldwide. Current drug options cannot cure the disease and may cause severe side effects. We developed a systematic framework to identify novel IBD drugs exploiting millions of genomic signatures for chemical compounds. Specifically, we searched all FDA-approved drugs for candidates that share s...

متن کامل

Leveraging Population‐Based Clinical Quantitative Phenotyping for Drug Repositioning

Computational drug repositioning methods can scalably nominate approved drugs for new diseases, with reduced risk of unforeseen side effects. The majority of methods eschew individual-level phenotypes despite the promise of biomarker-driven repositioning. In this study, we propose a framework for discovering serendipitous interactions between drugs and routine clinical phenotypes in cross-secti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011